

AE SENIOR THESIS SPRING 2009

MATTHEW HAAPALA

BAE/MAE STRUCTURAL OPTION

FACULTY CONSULTANT: DR. HANAGAN

AL SINGL SINGL SINGLESS

PRESENTATION OUTLINE

- Existing Conditions
- Thesis Proposals and Goals
- Gravity System Redesign
- Lateral System Redesign
- Foundation OptimizationCost & Schedule Analysis
- Lighting Redesign
- Conclusions
- Question and Answer

BY: MATTHEW HAAPALA

•LATERAL SYSTEM REDESIGN

•CONCLUSIONS

BUILDING STATISTICS

Building Name: Foreman Field Game Day Building

Project Team:

- Owner Old Dominion University
- General Contractor S.B. Ballard Construction Company
- Architect Ellerbe Becket
- Engineer Clark Nexsen

Size: Gross Floor Area = 54,877 sq. ft., Height = 47 ft.

- 1st Floor = 16,500 sq. ft.
- 2nd Floor = 16,100 sq. ft.
- 3rd Floor = 11,500 sq. ft.
- 4th Floor = 10,800 sq. ft.

Construction: Dates of February 22, 2008 thru July 22, 2009

Cost: \$11.9 million

Project Delivery Method: Design-Building

BUILDING STATISTICS

Location: The Game Day building is currently under construction in the south end zone of Foreman Field on the campus of Old Dominion University in Norfolk Virginia.

BY: MATTHEW HAAPALA

•Cost & Schedule Analysis THESIS PROPOSAL & GOALS

•LIGHTING REDESIGN •GRAVITY SYSTEM REDESIGN

•CONCLUSIONS •LATERAL SYSTEM REDESIGN

EXISTING GRAVITY SYSTEM

Cast in Place Reinforced Concrete Flat Plate

- Typical bay size 31'-6" x 17'-0"
- Typical slab depth 12"
- No shear caps or drop panels
- Shear stud rails used to resist punching shear

Cast in Place Reinforced Concrete Beams

Located around openings and seating

Cast in Place Concrete Columns

■ 18" x 18" typical

3RD FLOOR STRUCTURAL PLAN

Blue: Beam Location

Red: Column or Load Bearing Wall Location

BY: MATTHEW HAAPALA

•LATERAL SYSTEM REDESIGN

EXISTING LATERAL SYSTEM

- Seven Cast in Place Reinforced Concrete Shear Walls
- Located in Architecturally Convenient Locations

EXISTING LATERAL SYSTEM

- Capacity Significantly Exceeds Lateral Loading Demands
- Column & Slab Moment Frames' Stiffness not Considered

BY: MATTHEW HAAPALA

•LATERAL SYSTEM REDESIGN

•CONCLUSIONS

EXISTING FOUNDATIONS

- Square Precast Prestressed Concrete (SPPC) Piles
- 100′ long from Tip to Cutoff
- 183 Piles Total
- Typically Driven in Clusters of 4 Below Most Columns
- Clusters of Up to 18 Below Shear Walls
- Topped With 36" 40" Deep Pile Caps
- Grade Beams Below Exterior Walls & Between Pile Caps

	Sub-Surface Soild Conditions			
Average Depth (ft.) Description				
0 to 1	Topsoil or Asphalt			
0 to 4	Fill of fibrous organics and wet sand			
2 to 18 Sand with varying amounts of silt and clay				
18 to 53-84 Gray, wet clay with varying amounts of sand and marine shell fragments				
53-84 to 110	Gray, wet, silty, fine sand with marine shell fragments and varying amounts of clay			

EXISTING FOUNDATIONS

BY: MATTHEW HAAPALA

•EXISTING CONDITIONS

•Cost & Schedule Analysis

•GRAVITY SYSTEM REDESIGN

•LIGHTING REDESIGN

•CONCLUSIONS •LATERAL SYSTEM REDESIGN

STRUCTURAL DEPTH PROPOSAL

Study 1 Gravity System Redesign

Problem: Two-way flat plate is structurally inefficient floor system Solution: Replace with one-way slabs on post tensioned beams Goals:

- Reduce slab depth
- Develop understanding of post tensioned concrete design
- Use post tensioning to minimize beam depth
- Reduce self weight of the structure

STRUCTURAL DEPTH PROPOSAL

Study 2 Lateral System Redesign

Problem: Shear walls' excess capacity suggests reduction possible Solution: Consider Moment Frames in Lateral Design and Remove **Existing Shear Walls Where Practical**

Goals:

- Utilize Post Tensioned Beams in Ordinary Concrete Moment Frames
- Reduce The Number of Shear Walls

Study 3 Foundation Optimization

Problem: With poor soils extensive deep foundations required

Solution: Analyze foundation requirements of redesigned structure to determine possible foundation reductions

Goal: Reduce the number of piles

BY: MATTHEW HAAPALA

•EXISTING CONDITIONS

•FOUNDATION OPTIMIZATION

THESIST NOT USAL G GUALS

•Cost & Schedule Analysis
•Lighting Redesign

•GRAVITY SYSTEM REDESIGN
•LATERAL SYSTEM REDESIGN

•CONCLUSIONS

C.M. BREADTH PROPOSALS

Problem: Unknown cost, constructability, and construction schedule impacts of structural redesign

Solution: Conduct cost and schedule analyses comparing of the original and redesigned structure

Goals:

- Lower the price of the structure
- Develop a construction sequence that satisfies the unique demands of post tensioning
- Do not Increase the Overall Project Duration

C.M. Breadth Proposals

BY: MATTHEW HAAPALA

LIGHTING BREADTH PROPOSAL

Problem: Original lighting design predominantly inexpensive troffers and cans

Solution: Create an alternate lighting scheme for the scholarship

Goals:

lounge

- Integrate the structural redesign into the redesigned lighting scheme
- Make the room seem more spacious have emphasizing the peripherals by having a high luminance on the Walls and Ceiling.
- Increase flexibility by specifying dimmable fixtures
- Satisfy ASHRE 90.1 and IESNA Lighting Handbook requirements
- Use attractive or concealed luminaries

LIGHTING BREADTH PROPOSAL

BY: MATTHEW HAAPALA

- •THESIS PROPOSAL & GOALS •COST & SCHEDULE ANALYSIS
- •GRAVITY SYSTEM REDESIGN •LIGHTING REDESIGN
- •LATERAL SYSTEM REDESIGN •CONCLUSIONS

GRAVITY SYSTEM REDESIGN

Reference Design Codes and Standa				
	Original Design Code	Substitutions		
	2003 Virginia Uniform	2006 IBC		
	Statewide Building Code			
	ASCE 7-02	ASCE 7-05		
	ACI 318-02	ACI 318 08		

Concrete Material Properties	Original		New	
		Cement		Cement
Location	f'c (psi)	Туре	f'c (psi)	Туре
Pile Caps and Grade Beams	3000	ı	3000	- 1
Slabs on Grade	3000	-	3000	- 1
Structural Slabs and Beams	5000	-	6000	III
Walls and Columns	5000	I	6000	III

BY: MATTHEW HAAPALA

•EXISTING CONDITIONS

•THESIS PROPOSAL & GOALS

•GRAVITY SYSTEM REDESIGN •LIGHTING REDESIGN

•LATERAL SYSTEM REDESIGN

•FOUNDATION OPTIMIZATION

•Cost & Schedule Analysis

•CONCLUSIONS

GRAVITY LOADING ASSUMPTIONS

GRAVITY LOADING DESIGN VALUES					
Loading	Design Value	ASCE 7-05 Req'd			
Pead Loads					
lormal Weight Concrete	150 pcf				
lasonry Walls	40 psf				
Curtin Walls	15 psf				
Mechanical/Electrical/Plumbing	5 psf				
00% Outdoor Air Handling Unit	750 lbs				
ariable Refrigerant Volume Heat Pump	350 lbs				
Sas Fired DX Package Roof top Unit	500 lbs				
X Split System Heat Pump	250 lbs				
ive Loads					
ROOF	20 psf	20 psf			
STAIRS	100 psf	100 psf			
CORRIDORS	100 psf	100 psf			
ERRACES	100 psf	100 psf			
SEATING	100 psf	60 psf			
STORAGE	125 psf	125 psf			
MECH./ELEC. ROOMS	125 psf				
inow Loads					
^o g	10 psf	10 psf			
Pf	11 psf	11 psf			

BY: MATTHEW HAAPALA

•LATERAL SYSTEM REDESIGN

•THESIS PROPOSAL & GOALS •Cost & Schedule Analysis

•LIGHTING REDESIGN ·GRAVITY SYSTEM REDESIGN

•CONCLUSIONS

TRIAL LAYOUT DEVELOPMENT

TRIAL LAYOUT DEVELOPMENT

BY: MATTHEW HAAPALA

PCA SLAB ANALYSIS & DESIGN

PCA SLAB ANALYSIS & DESIGN

BY: MATTHEW HAAPALA

PT BEAM HAND CALCULATIONS

Calculations

- Designed in accordance with ACI 318-08 for:
 - Flexural serviceability
 - Ultimate flexural strength
 - Shear and torsion
 - Deflection
- Every post tensioned beam analyzed at supports and midspan
- Member loads determined by iterative moment distribution
 - Pattern loading not critical
 - Moment redistribution not performed
 - ε_t>.0075 (ACI 318-08 Sect. 8.4.2)
- Beam/Slab effective T beams considered

BY: MATTHEW HAAPALA

PT BEAM HAND CALCULATIONS

- Interior beams
 - Depth: 14" = 2x slab depth of 7"
 - Width: 12" 40", typ. 28"
 - # Tendons: (5) (13), typ. (6)
 - Longitudinal Rebar: (3) (5) #8 Top & Bottom , typ. (4)
- Perimeter beams: depth 18"
 - Depth 18" 29"
 - Width 12" 24", typ. 18"
 - # Tendons: (4) (6), typ. (4)
 - Longitudinal Rebar : (2) (4) #8 Top & Bottom, typ. (2)
- On average 76% dead load balanced after losses
 Average 76% dead load balanced after losses
- Average Compressive Stress 164psi 475psi, typ. 250 psi
 - > Code required 125psi
 - < 500psi reasonable maximum</p>

PT BEAM HAND CALCULATIONS

BY: MATTHEW HAAPALA

•LATERAL SYSTEM REDESIGN

•CONCLUSIONS

RAM CONCEPT ANALYSIS

BY: MATTHEW HAAPALA

•EXISTING CONDITIONS •FOUNDATION OPTIMIZATION
•THESIS PROPOSAL & GOALS •COST & SCHEDULE ANALYSIS

•GRAWITY SYSTEM REDESIGN •LIGHTING REDESIGN

•LATERAL SYSTEM REDESIGN •CONCLUSIONS

TORSION & DEFLECTION DESIGN

BY: MATTHEW HAAPALA

•EXISTING CONDITIONS •FOUNDATION OPTIMIZATION

•THESIS PROPOSAL & GOALS •COST & SCHEDULE ANALYSIS

•GRAMITY SYSTEM REDESIGN •LIGHTING REDESIGN

•LATERAL SYSTEM REDESIGN •CONCLUSIONS

TORSION & DEFLECTION DESIGN

BY: MATTHEW HAAPALA

BY: MATTHEW HAAPALA

BY: MATTHEW HAAPALA

THESIS PROPOSAL & GOALS

•LIGHTING REDESIGN

•Cost & Schedule Analysis

·LATERALSYSTEM REDESIGN •CONCLUSIONS

LATERAL SYSTEM REDESIGN

BY: MATTHEW HAAPALA

·LATERAL SYSTEM REDESIGN •CONCLUSIONS

•LIGHTING REDESIGN

WIND LOADING

WIND LOADING

BY: MATTHEW HAAPALA

THESIS PROPOSAL & GOALS

•Cost & Schedule Analysis

•LIGHTING REDESIGN

·LATERAL SYSTEM REDESIGN •CONCLUSIONS

SEISMIC LOADING

Seismic Design Values			
ite Class	D		
mportance Factor, I	1.25		
s	0.118		
1	0.048		
a	1.6		
·	2.4		
_{DS} =(2/3)*F _a *S _s	0.126		
_{D1} =(2/3)*F _v *S ₁	0.0768		
eismic Design Category	В		
Building Height, h	47'		
rt	0.02		
	0.75		
a = Ct*h ^x	0.359		
Cu	1.7		
CuTa	0.61		
Ĺ	8		

SEISMIC LOADING

Design Coefficients for Seismic Force Resisting Systems					
Seismic Force Resisting System	Response Modification Coefficient, R	Deflection Amplification Factor, C _d			
Ordinary Reinforced Concrete Moment Frames	3	2.5			
Ordinary Reinforced Concrete Shear Walls	5	4.5			
Ordinary Reinforced Concrete Moment Frames and Ordinary Reinforced Concrete Shear Walls	4.5	4			

BY: MATTHEW HAAPALA

•Cost & Schedule Analysis

THESIS PROPOSAL & GOALS

•LIGHTING REDESIGN

·LATERAL SYSTEM REDESIGN •CONCLUSIONS

SHEAR WALL 7 REMOVAL

SHEAR WALLS 1 & 3 REMOVAL

BY: MATTHEW HAAPALA

XISTING CONDITIONS •FOUNDATION OPTIMIZATION

THESIS PROPOSAL & GOALS •Cost & Schedule Analysis

•LIGHTING REDESIGN

·LATERAL SYSTEM REDESIGN •CONCLUSIONS

LATERAL SYSTEM PLAN

- = Columns Sections Increased
- = Plan East/West Direction Lateral System Components
- = Plan North/South Direction Lateral System Components

BY: MATTHEW HAAPALA

THESIS PROPOSAL & GOALS

•Cost & Schedule Analysis

•LIGHTING REDESIGN

·LATERAL SYSTEM REDESIGN •CONCLUSIONS

SOUTH WIND DEFLECTED SHAPE

Max Deflections Caused By Wind Loading						
Story	Max Deflection X	Max Deflection Y	h/600	Deflection Check		
	(in.)	(in.)	(in.)	(OK or NG)		
Roof	0.0686	0.0868	0.2133			
Floor 4	0.0709	0.0401	0.2133			
Floor 3	0.0707	0.0376	0.2133	OK		
Floor 2	0.0684	0.0340	0.3000	OK		

SEISMIC DEFLECTED SHAPE

	Seismic Drift Analysis							
	East/West Direction							
Story Cd Average Diaphragm Drift Max Diaphragm Drift Seismic Drift Limit Exceded Torsio								
Roof	2.5	0.002915	0.002953	0.02	No	No		
Floor 4	2.5	0.003378	0.003418	0.02	No	No		
Floor 3	2.5	0.003383	0.003383 0.003418	0.02	02 No	No		
Floor 2	2.5	0.002220	0.002245	0.02	No	No		
			North South	Direction				
Story	Cd	Average Diaphragm Drift (Y)	Max Diaphragm Drift (Y)	Seismic Drift Limit	Drift Limit Exceded	Torsional Irregularity		
Roof	4	0.001120	0.001204	0.02	No	No		
Floor 4	4	0.000816	0.000960	0.02	No	No		
Floor 3	4	0.000816	0.000884	0.02	No	No		
Floor 2	4	0.000396	0.000472	0.02	No	No		

BY: MATTHEW HAAPALA

EXISTING CONDITIONS

•FOUNDATION OPTIMIZATION

·THESIS PROPOSAL & GOALS

•Cost & Schedule Analysis

·GRAVITY SYSTEM REDESIGN

•LIGHTING REDESIGN

·LATERAL SYSTEM REDESIGN •CONCLUSIONS

SHEAR WALL DESIGN

Loading						
Load Combo	1.2D+1.6W+L	0.9D+1.6W	1.2D+1.0E+L	0.9D+1.0E		
P _u (Kips)	1127	606	1128	606		
V _u (Kips)	174	201	. 27	54		
M _u (K-ft)	8001	7969	3370	3333		

M _u (K-ft)		8001	7965	3370	
Ф Desig	n Values	Shear Reinforc	ement Req'd	Flexural Reinfor	į
Ф Tension	0.9	# of Curtains Req'd	1	Boundary Zone	I
Ф Shear	75	As min (in^2/ft)	0.54	Flexural Reinford	ė
Φ Comp.	0.65	Max Spacing (in)	13.78	# of Bars	I
	metry	Shear Reinforce	ement Design	Bar Size	I
		# of Curtains	2	ФМп>Мu,ФPn>Pu	l
l _w (in)	222	Bar Size	#5		•
h (in)	18	Bar Spacing (in)	12	Flexural Reinfor	¢
h _w (in)	180	ας	3		
d %	80.00%	ρt	0.006	THE ROLL MEAN.	
A (in^2)	3996	ΦVn (Kips)	268	HE SO-EDALE	1
S (in^3)	147852	Vu/∳Vn	75%		
(in^4)	16411572			TUP O.A.	
Material	Properties				
ec.	6000			END O	į

BY: MATTHEW HAAPALA

FOUNDATION OPTIMIZATION

FOUNDATION OPTIMIZATION

Shear Wall Base Shear Comparison Chart							
Orig	Original Base Shear New Design Base Shear						
Seismic	Seismic Wind Seismic		Win	ıd			
(Kips)	(Kips)	(Kips)	% Orig.	(Kips)	% Orig.		
72	99	62	86%	95	96%		
129	162	106	82%	158	98%		
102	81	67	66%	77	95%		

Shear Wall Foundation Analysis										
Wall	Critical Comp. Load	Critical Tensile Load	Critical Shear Load	P <p<sub>Allowab</p<sub>	V <v<sub>Allowable</v<sub>	Uplift	Original	Final		
	(K/Pile)	(K/Pile)	(K/Pile)				# of Piles	# of Piles		
SW 1, SW 3, SW 5, & SW7							22	0		
SW 2	77	-29	9	OK	OK	YES	10	10		
SW 4		-27	12	OK	Fail*	YES	10	10		
SW 6	61	-21	8	ОК	OK	YES	12	12		

Original # of Piles	Final # of Piles	Difference
113	110	-3
54	32	-22
16	16	
183	158	-25
	113 54 16	113 110 54 32 16 16

BY: MATTHEW HAAPALA

•EXISTING CONDITIONS •FOUNDATION OPTIMIZATION
•THESIS PROPOSAL & GOALS •COST & SCHIEDULE ANALYSIS

•GRAVITY SYSTEM REDESIGN •LIGHTING REDESIGN

•LATERAL SYSTEM REDESIGN •CONCLUSIONS

COST ANALYSIS

BY: MATTHEW HAAPALA

•THESIS PROPOSAL & GOALS

•LATERAL SYSTEM REDESIGN

THESIS PROPOSAL & GOALS

COST & SCHEDULE ANALYSIS

-

•GRAVITY SYSTEM REDESIGN •LIGHTING REDESIGN

•CONCLUSIONS

ORIGINAL DESIGN SCHEDULE

BY: MATTHEW HAAPALA

•THESIS PROPOSAL & GOALS

•GRAVITY SYSTEM REDESIGN

•LATERAL SYSTEM REDESIGN

COST & SCHEDULE ANALYSIS

•LIGHTING REDESIGN.

•CONCLUSIONS

NEW DESIGN SCHEDULE

CONSTRUCTION SEQUENCE

BY: MATTHEW HAAPALA

•THESIS PROPOSAL & GOALS •GRAVITY SYSTEM REDESIGN

•LATERAL SYSTEM REDESIGN •CONCLUSIONS

•Cost & Schedule Analysis

·LIGHTING REDESIGN

LIGHTING REDESIGN

BY: MATTHEW HAAPALA

•EXISTING CONDITIONS •FOUNDATION OPTIMIZATION
•THESIS PROPOSAL & GOALS •COST & SCHEDULE ANALYSIS

•GRAVITY SYSTEM REDESIGN •LIGHTING REDESIGN

•LATERAL SYSTEM REDESIGN •CONCLUSIONS

PSEUDO COLOR RENDERING

BY: MATTHEW HAAPALA

CONCLUSIONS

Gravity System Redesign

- ✓ Slab depth reduced by 5"
- ✓ Floor depth increase at beams only 2"
- ✓ Buildings weight reduced by 36%

Lateral System Redesign

- ✓ 4 out of 7 shear walls removed
- ✓ Lateral loading does not control beam design

Foundation Optimization

✓ Number of Piles Reduced by 15%

Cost and Schedule Analysis

- √ \$238,000 in savings
- ✓ Structural erection expedited

Lighting Redesign

✓ Non uniform floor depth can improve aesthetics

BY: MATTHEW HAAPALA

ACKNOWLEDGEMENTS

Professional Consultants

 Rich Apple **Holbert Apple Associates**

 Peter A. Allen Clark Nexsen Brian M. Barna

Clark Nexsen

Clark Nexsen

Clark Nexsen

John Wilson AE Dept. Faculty

Dr. Walter Schneider III

Dr. Andres Lepage

Alicia B, Udovich

 Dr. Linda Hanagan Dr. Ali Memari

Dr. John Messner

Classmates, Friends, and Family

QUESTIONS?

BY: MATTHEW HAAPALA

